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Boundary effects on electro-magneto-phoresis
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The effect of a remote insulating boundary on the electro-magneto-phoretic motion of
an insulating spherical particle suspended in a conducting liquid is investigated using
an iterative reflection scheme developed about the unbounded-fluid-domain solution
of Leenov & Kolin (J. Chem. Phys., vol. 22, no. 4, p. 683). Wall-induced corrections
result from velocity reflections, successively introduced so as to maintain the no-slip
condition on the wall and particle boundaries, as well as from the Lorentz forces
associated with comparable reflections of the electric field. This method generates
asymptotic expansions in λ (�1), the ratio of particle size to particle–wall separation.
The leading-order correction to the hydrodynamic force on the particle appears at
O(λ3); it is directed along the leading-order force and tends to augment it.

1. Introduction
When uniform electric and magnetic fields are externally applied in an electrically

conducting liquid, a uniform Lorentz force density is generated. In a bounded
domain, this body force is balanced by a hydrostatic-like pressure distribution,
and the liquid remains at rest. If an insulating particle (say of matching magnetic
permeability) is introduced into the liquid, it experiences a force whose source
is twofold: an ‘electromagnetic buoyancy’, arising from that distribution, and a
viscous-flow contribution, generated by the rotational Lorentz force density associated
with the expulsion of current lines from the volume occupied by the particle. The
ensuing motion of a freely suspended particle, known as ‘electro-magneto-phoresis’,
is employed in various biological (Kolin & Kado 1958; Kolin 1978; Watarai, Suwa
& Iiguni 2004) and metallurgical (Xu, Li & Zhou 2007) applications.

The pioneering theoretical analysis of this phenomenon was carried out by Leenov
& Kolin (1954) who calculated the flow about a spherical particle which is suspended
in an unbounded fluid domain. The strive to understand the response of more
complicated particle geometries has led to the development of general symmetry
analysis for arbitrary body shapes (Moffatt & Sellier 2002) as well as sophisticated
boundary integral methods (Sellier 2003b). Other investigations have focused upon
obtaining analytic solutions for idealized particle geometries in unbounded space. For
example, the flow about a tri-axial ellipsoid was calculated by Sellier (2003a) and that
about axisymmetric slender bodies was asymptotically analysed by Yariv & Miloh
(2007).
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Since all practical devices are bounded in one or more dimensions, it is important
to extend the preceding work by incorporating wall effects. The two simplest bounded
configurations were described by Sellier (2005): the first consists of a spherical particle
in the vicinity of a plane dielectric wall, where at large distances from the particle
a uniform electric current is directed parallel to the wall. The second involves a
conducting wall, the applied field being perpendicular to it; it can describe particle
motion in the vicinity of an electrode (Keh & Anderson 1985). In both configurations,
it is natural to assume that the magnetic field is applied perpendicular to the current,
as it would be in typical engineering applications. In the first configuration, it may
still possess an arbitrary orientation relative to the wall.

Both problems are governed by a single geometric parameter λ, the ratio of particle
radius to the particle-wall distance. For λ=O(1), they can be solved using bi-polar
coordinates, where both the particle and wall boundaries constitute equi-coordinate
surfaces. The formulation in terms of these coordinates was provided by Sellier (2005),
who also solved the second problem (Sellier 2006). The solution of the electrostatic
and flow equations using bi-polar coordinates solutions appears in the form of
eigenfunction expansions. Integration over the particle surface provides the quantities
of physical interest, namely expressions for the hydrodynamic loads (force and torque)
acting on it.

It is important to emphasize that these quantities appear in the form of infinite
converging series, whose coefficients must be determined by matrix inversion
using truncation methods. Accordingly, they do not provide closed-form functional
description for the behaviour of these loads as a function of the particle–wall
separation (or, equivalently, of λ). It is therefore desired to supplement the bi-polar
calculations with complementary asymptotic approximations for both small (1−λ� 1)
and large (λ� 1) separations. This approach is common in various analyses of
particle–particle and particle–wall interactions, including potential problems (Jeffery
1912; Bentwich & Miloh 1978; Solomentsev, Velegol & Anderson 1997), Stokes flows
(Stimson & Jeffery 1926; Brenner 1961; O’Neill 1964; Goldman, Cox & Brenner 1967)
and electrokinetics (Keh & Anderson 1985; Keh & Chen 1989; Yariv & Brenner
2003). The large-separation problems are handled via reflection methods, using the
unbounded-fluid-domain solution (in the absence of a wall) as a first approximation;
the small-separation problems are handled by appropriate lubrication approximations.
In this paper we follow a similar approach and analyse the large-separation limit
λ� 1.

We focus upon the first bounded configuration of Sellier (2005): the effect of a
remote insulating wall upon the electro-magneto-phoretic motion of an insulating
spherical particle. Such an insulating boundary constitutes a standard model for
dielectric walls which are abundant in micro-channel experiments (Watarai et al.
2004). In principle, it is possible to extend the present analysis so as to handle
conducting particles and walls. Note, however, that the common practice of
modelling conducting surfaces using current-continuity boundary conditions (Leenov
& Kolin 1954) is somewhat oversimplified as it does not account for the surface
kinetics.

Since our interest is in assessing the wall effect, we adopt a relatively simple
model, assuming the particle to possess the same magnetic permeability as that of
the suspending liquid. The magnetic field is then uniform in the entire fluid domain.
As is common in electro-magneto-phoretic analyses we take both the Reynolds and
magnetic Reynolds numbers to be zero. Moreover, following Moffatt & Sellier (2002),
we assume a vanishingly small Hartmann number. This assumption leads to two
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simplifications in the problem formulation: the electrostatic problem is uncoupled
from the flow, and all flow variables are bilinear in the imposed electric and magnetic
fields. This bilinearity enables us to analyse separately the cases of a magnetic field
which is parallel to the wall, and one which is perpendicular to it. Due to the
linearity of the Stokes equations in the velocity field, it is sufficient to analyse a
stationary particle: Once the hydrodynamic loads on such a particle are evaluated,
existing mobility relations (Happel & Brenner 1965; Kim & Karrila 1991) are utilized
so as to provide the velocity of a freely suspended particle through the physical
space.

The effect of a remote wall is studied using reflection techniques about the
unbounded-fluid-domain solution of Leenov & Kolin (1954). The electric potential
is obtained in the form of successive solutions that alternately satisfy the boundary
conditions on either the particle or the wall. The evaluation of the velocity field is
more complicated: in addition to the need to impose the zero-velocity condition on
both surfaces, it is also necessary to account for the Lorentz body force associated
with the preceding electric-potential reflections. Additional complications arise in
transforming the velocity field of Leenov & Kolin (1954) to a Cartesian coordinate
system aligned with the wall: since that field does not satisfy the homogeneous Stokes
equations, the well-known Fourier representations of Faxén (Happel & Brenner 1965;
Kim & Karrila 1991) are inadequate for that task.

The paper is organized as follows: In the next section, we formulate the governing
equations and employ the symmetry arguments of Moffatt & Sellier (2002) to deduce
the tensorial structure of the hydrodynamic loads. The large-separation iterative
scheme is described in § 3. Section 4 is concerned with the evaluation of the leading-
order corrections to the hydrodynamic reactions and the subsequent calculation of the
rectilinear and angular velocities acquired by a freely suspended particle. Conclusions
are drawn in § 5.

2. Problem formulation
An insulating spherical particle of radius a is positioned within a conducting liquid

of matching magnetic permeability at distance a/λ (λ < 1) from a plane dielectric wall.
The Newtonian liquid possesses a dynamic viscosity η and an electrical conductivity
σ . The fluid domain is denoted by D , the liquid–particle interface by P and the
liquid–wall interface by W . This system is exposed to a uniformly applied electric
field E = E Ê, where Ê is a unit vector directed parallel to the wall, and a uniformly
applied magnetic field B = B B̂, where B̂ is a unit vector which is perpendicular to
Ê. Our interest lies in the resulting hydrodynamic force and torque exerted on the
particle.

We employ a dimensionless notation where length variables are scaled with a, the
electric field with E and the electrical potential with aE. The corresponding scales
for stresses, forces and torques are then respectively provided by σEBa, σEBa3 and
σEBa4. The velocity field is normalized with σEBa2/η. We refer to the coordinate
normalization with a as the ‘inner description’.

It is convenient to define a Cartesian coordinate system r = (x, y, z) with the
particle centre at its origin, the x-axis along the applied electric field and the z-axis
perpendicular to wall. Thus, W is given by z = −1/λ and Ê = êx . It is also convenient
to employ the spherical coordinates r and θ (see figure 1), r = 0 corresponding to the
particle centre and the polar angle θ measured from the x-axis.
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Figure 1. A schematic illustration of the particle–wall configuration.

2.1. Governing equations

The presence of the insulating particle modifies the electric field from its undisturbed
value Ê to Ê − ∇ϕ. The liquid acts as an Ohmic conductor, with the current density
being proportional to that field. Thus, charge conservation implies that the potential
disturbance ϕ is governed by Laplace’s equation

∇2ϕ = 0 in D; (2.1)

also, the requirement that the solid surfaces are impermeable to electric current
implies the Neumann-type boundary condition on the particle

∂ϕ

∂r
= cos θ for r = 1 (2.2)

and on the wall
∂ϕ

∂z
= 0 for z = −1/λ; (2.3)

additionally, ϕ is required to attenuate at large distances from the particle.
The applied fields result in the Lorentz force density distribution

Ê × B̂ − ∇ϕ × B̂. (2.4)

The first term in (2.4) represents a uniform body force; it is balanced by a ‘hydrostatic’
pressure distribution, which in turn results in the electromagnetic buoyancy force

−4π

3
Ê × B̂. (2.5)

The second term in (2.4) is rotational and cannot be balanced by any pressure
distribution; thus, it results in a fluid motion. This motion is governed by the
continuity equation

∇ · v = 0 (2.6)

and the inhomogeneous Stokes equation

∇2v = ∇p + ∇ϕ × B̂. (2.7)

Here, v is the velocity field and p is the ‘modified’ pressure, above and beyond the
‘hydrostatic’ distribution which generates (2.5). These equations are supplemented by
the impermeability and no-slip boundary conditions on W and P:

v = 0 for r = 1, z = −1/λ, (2.8)
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together with the requirement that v decays to zero at large distances away from the
particle.

In what follows we consider two separate cases; one where B̂ lies normal to the
wall (the ‘perpendicular case’) and the other where it lies parallel to it (the ‘parallel
case’). Because the governing equations are linear and homogeneous in B̂, the solution
to the general situation of a magnetic field at an arbitrary angle to the wall can be
retrieved via an appropriate superposition of the results corresponding to these two
cases.

2.2. Tensorial symmetry arguments

As explained by Moffatt & Sellier (2002), the hydrodynamic force (F) and torque
(G) animated by the applied fields are bilinear in the fixed vectors Ê and B̂ and are
therefore provided by the contractions

F = F : Ê B̂, G = G : Ê B̂, (2.9)

where F is a third-order pseudo-tensor and G is third-order true tensor. We employ
the Gibbs convention for tensor contraction.

Since the bilinear dependence upon the applied fields has been factored out, the
dimensionless coefficients F and G are purely geometric quantities, which depend only
upon the particle–wall geometry. The only vector appearing in the specification of
this geometry is the normal to the wall. Thus, the only possible candidates for F are
the isotropic pseudo-tensor ε, as well as ε · n̂n̂ (and permutations thereof), where
n̂( = êz) is a unit normal to the wall. It is readily found that if B̂ = êy the force acts

in the z-direction; if B̂ = êz it acts in the y-direction.
There are no isotropic third-order true tensors, whence the only candidates for G

are n̂n̂n̂ and various permutations of In̂, I being the unit tensor. It is readily found
that if B̂ = êz the torque acts in the x-direction, while if B̂ = êy the torque vanishes.

Similar tensorial arguments actually show that the case of parallel magnetic and
electric fields (say B̂ = êx) is of no practical interest. For that case, it is already
known (Moffatt & Sellier 2002) that the particle does not experience any loads when
placed in an unbounded fluid domain. The presence of a nearby wall introduces new
candidates for F, namely, ε · n̂n̂ and permutations thereof. These candidates, however,
vanish upon contraction with êx êx . The only effect generated by the wall is associated
with the new candidate for G, n̂I. This candidate results in a couple along the z-axis.
Due to symmetry, this couple does not provoke any rectilinear particle motion.

3. Large separation analysis
We focus here upon the case where the particle–wall separation is large compared

with the particle size, i.e. λ� 1. This allows for an iterative solution using a reflection
scheme of the kind used in other classes of field-driven flows (Keh & Anderson 1985).
The scheme consists of generating successive approximations that alternately satisfy
the boundary conditions on either P or W . The first approximation corresponds to
a particle in an unbounded fluid domain (λ→ 0).

The electrostatic problem has already been solved in that manner by Keh &
Anderson (1985) in a different physical context. Thus, the potential is provided by
the iterative series

ϕ = ϕ
(0)
P +

[
ϕ

(1)
W + ϕ

(1)
P

]
+

[
ϕ

(2)
W + ϕ

(2)
P

]
+ · · · (3.1)
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wherein the first approximation is a dipole

ϕ
(0)
P = −cos θ

2r2
= − x

2[x2 + y2 + z2]3/2
. (3.2)

The harmonic ‘wall correction’ ϕ
(n)
W (n � 1) satisfies

∂ϕ
(n)
W

∂z
= −∂ϕ

(n−1)
P

∂z
for z = −1/λ, (3.3)

in accordance with the no-flux condition (2.3) on the wall. Similarly, the harmonic
‘particle correction’ ϕ

(n)
P (n � 1) satisfies

∂ϕ
(n)
P

∂r
= −∂ϕ

(n)
W

∂r
for r = 1, (3.4)

in accordance with the no-flux condition (2.2) on the particle. Both fields are required
to decay at large distances from the particle.

Consider now the flow field. The zeroth-order approximation (v(0)
P, p

(0)
P), correspo-

nding to λ→ 0, was derived by Leenov & Kolin (1954). If B̂ = êz their notation agrees
with the present one. Thus,

v
(0)
P =

1

8

(
1

r5
− 1

r3

)
[xy êx + (z2 − x2)êy − yzêz]. (3.5)

The velocity field for the case B̂ = êy is obtained by simultaneously applying the
transformations z → y, y → −z to (3.5).

We present the iterative series (together with a similar one for p):

v = v
(0)
P +

[
v

(1)
W + v

(1)
P + v(1)

ϕ

]
+

[
v

(2)
W + v

(2)
P + v(2)

ϕ

]
+ · · · , (3.6)

in which all fields decay to zero at large distances from the particle. The pair (v(n)
W , p

(n)
W )

(n � 1) satisfies the homogeneous Stokes equations and the boundary condition

v
(n)
W = −v

(n−1)
P for z = −1/λ, (3.7)

which restores the null value of v on W that is violated by v
(n−1)
P . Similarly, the

pair (v(n)
P, p

(n)
P ) (n � 1) satisfies the homogeneous Stokes equations and the boundary

condition

v
(n)
P = −v

(n)
W for r = 1, (3.8)

which guarantees the null value of v on P , which is violated by v
(n)
W .

In addition to the ‘standard’ reflections v
(n)
W and v

(n)
P , it is also necessary to add proper

corrections which handle the additional Lorentz terms which are engendered by the
electric-potential reflections. Thus, the velocity field v(n)

ϕ satisfies the inhomogeneous
Stokes equation [cf. (2.7)]:

∇2v(n)
ϕ = ∇p(n)

ϕ + ∇
(
ϕ

(n)
W + ϕ

(n)
P

)
× B̂, (3.9)

and vanishes on both P and W . This field restores the momentum balance which is
violated by the body force associated with the electric-potential corrections.

Note that the wall reflections do not directly contribute to the hydrodynamic
load, since they are regular within the particle. Moreover, the contribution F(n)

P

and G(n)
P arising from particle reflection n(� 1) are simply provided by Faxén’s

laws (Happel & Brenner 1965) applied upon the predecessor wall reflection which
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‘triggered’ it:

F(n)
P =

[
6πv

(n)
W + π∇2v

(n)
W

]
r=0

, G(n)
P = 4π

[
∇ × v

(n)
W

]
r=0

. (3.10)

4. Leading-order correction
The loads exerted in an unbounded domain, resulting from the zeroth-order flow

field v
(0)
P , were already calculated by Leenov & Kolin (1954):

F(0) =
π

3
Ê × B̂, G(0) = 0. (4.1)

Our interest lies in the wall-induced leading-order correction to (4.1). Towards this
end, it is sufficient to evaluate the loads delivered by the leading-order flow corrections.

The contribution of v(1)
ϕ is relatively easy to find, since the first few terms in (3.1)

have already been determined by Keh & Anderson (1985). Thus, ϕ
(1)
W represents a

mirror dipole positioned at z = −2/λ:

ϕ
(1)
W = − x

2[x2 + y2 + (z + 2/λ)2]3/2
. (4.2)

Taylor expansion near the particle centre yields

ϕ
(1)
W ∼ −xλ3

16
[1 + O(λ)] . (4.3)

The leading term in this expression represents a uniform electric field in the x-direction
of magnitude λ3/16. The effect of a uniform field is already known from the solution
of Leenov & Kolin (1954) (cf. (2.5) and (4.1)), whence

F(1)
ϕ = − π

16
λ3 Ê × B̂ + O(λ4), G(1)

ϕ = O(λ4). (4.4)

To evaluate the loads delivered by v
(1)
P we need to calculate v

(1)
W and then apply

Faxén’s relations (3.10) for n= 1.

4.1. The first wall reflection

To evaluate v
(1)
W it is convenient to follow Ho & Leal (1974) and employ an ‘outer’

description R = (X, Y, Z) defined by R = λr:

X = λx, Y = λy, Z = λz, R = λr, ∇ = λ∇R. (4.5)

Expressed in the outer variables, W is the plane Z = −1 and P is the sphere R = λ.
When using outer variables v

(0)
P is O(λ). This reflects the 1/r decay rate in (3.5).

Since v
(1)
W satisfies the homogeneous Stokes equations, it can be expressed using

Faxén’s Fourier integral representation (Happel & Brenner 1965). Following Ho &
Leal (1974) we express the Cartesian components of v

(1)
W in the form:

u
(1)
W = F

{[
g1 +

α2

k2
(g2 + kZg3)

]
e−kZ

}
,

v
(1)
W = F

{
αβ

k2
[g2 + kZg3] e−kZ

}
,

w
(1)
W = F

{
iα

k
[g1 + g2 + g3(1 + kZ)] e−kZ

}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)
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wherein k =(α2 + β2)1/2 and g1, g2 and g3 are arbitrary functions of α and β . Here,
F denotes a two-dimensional Fourier transform, defined generically by

F {f } =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (α, β) ei(αX+βY ) dα dβ. (4.7)

Towards application of (3.10), we use (4.5) and (4.6) to obtain

[
v

(1)
W

]
r=0

= F

{(
g1 +

α2

k2
g2

)
êx +

αβ

k2
g2 êy +

iα

k
(g1 + g2 + g3)êz

}
,

[
∇2v

(1)
W

]
r=0

= −2λ2F
{
α2g3 êx + αβg3 êy + iαkg3 êz

}
,

[
∇ × v

(1)
W

]
r=0

= λF

{
−αβ

k
(g1 + 2g3)êx +

2α2g3 − β2g1

k
êy − iβg1 êz

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

The functions g1, g2 and g3 are determined by imposing (3.7) for n= 1. Thus, it is first
required to represent v

(0)
P as a Fourier integral. This requirement is familiar from

previous applications of Faxén’s Fourier representation (Ho & Leal 1974; Magnaudet,
Takagi & Legendre 2003); in the present case, however, it introduces some difficulties,
since v

(0)
P is not a solution of the homogeneous Stokes equations and thus cannot be

expressed in a form similar to (4.6). It is therefore necessary to represent the following
expressions (cf. (3.5)):

1

R3
,

X

R3
,

Y

R3
,

XY

R3
,

X2

R3
,

Y 2

R3
,

1

R5
,

X

R5
,

Y

R5
,

X2

R5
,

Y 2

R5
,

XY

R5
(4.9)

as Fourier integrals (evaluated at Z = −1). This is done in Appendix A.
Imposing (3.7) for n= 1 then provides the requisite expressions for g1, g2 and g3

(see Appendix B). Note that these expressions are pre-factored by λ; indeed, since
v

(0)
P is O(λ) in the outer scale, then so must also be v

(1)
W .

4.2. The hydrodynamic loads

Substituting the expressions for g1, g2 and g3 into (4.8), performing the integration
over the (α, β) plane using polar coordinates and using (3.10) yields the force and
torque triggered by v

(1)
W . For B̂ = êz we employ (B 1) to obtain

F(1)
P =

π

16
λ3 êy + O(λ5), G(1)

P =
π

4
λ2 êx + O(λ4). (4.10)

The directions of these hydrodynamic loads agree with the tensorial requirements.
Employing (B 2) for the case B̂ = êy yields zero force and torque. The absence of a
torque in that case is also in accordance with the tensorial requirements.

Since at the outer scale v
(1)
W is O(λ) one may expect a leading O(λ) contribution

to F(1)
P from the first term in (3.10). However, the explicit calculation shows that

v
(1)
W actually vanishes at r = 0, whence the leading O(λ3) contribution to F(1)

P arises

from the Laplacian of v
(1)
W . To verify that a leading-order correction has indeed been

attained, it is therefore necessary to inspect the leading-order contribution to the
force which is triggered by v

(2)
W . Expanding v

(1)
W into a Taylor series about R = 0

yields

v
(1)
W =

[
v

(1)
W

]
R=0

+ R ·
[
∇Rv

(1)
W

]
R=0

+ 1
2

RR :
[
∇R∇Rv

(1)
W

]
R=0

+ · · · . (4.11)

Since v
(1)
W is O(λ), then so are its gradients with respect to outer coordinates. When

transforming to inner coordinates towards application of (3.8) with n= 1, (4.11)
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becomes an asymptotic sequence in powers of λ. Since v
(1)
W was found to vanish at

R = 0, the leading O(λ2) contribution to (4.11) arises from the second term there, and
is linear in r . Accordingly, v

(1)
P is O(λ2) when expressed in inner coordinates. When

rewriting v
(1)
P in outer variables, its order of magnitude depends upon its decay rate, a

1/rn rate resulting in a λn multiplicative factor. Since an ambient velocity term which
is linear in r is known to result in a velocity disturbance that decays as 1/r2 (Leal
1992), v

(1)
P is O(λ4) at the outer description and whence so must be v

(2)
W . According to

(3.10) and (4.5), the force and torque triggered by v
(2)
W are at most O(λ4) and O(λ5),

respectively.
Combining (2.5), (4.1), (4.4) and (4.10), and taking into account the symmetry

arguments of § 2.2, we therefore find that the perpendicular case B̂ = êz results in the
loads

F = π

[
1 +

1

8
λ3 + O(λ4)

]
êy, G =

[
π

4
λ2 + O(λ4)

]
êx, (4.12)

while the parallel case B̂ = êy results in the force

F = −π
[
1 + 1

16
λ3 + O(λ4)

]
êz. (4.13)

and in a zero torque.

4.3. The velocity of a freely suspended particle

If the particle is freely suspended, its translational velocity U and angular velocity Ω

due to the loads F and G are obtained by employing the mobility relations (Happel
& Brenner 1965; Kim & Karrila 1991):

U = M · F + C · G, Ω = C† · F + N · G. (4.14)

Here, the dimensionless tensorial coefficients M, C and N are functions of the particle–
wall geometry. Thus, the true tensor M possesses the transversally symmetric forms

M = (I − n̂n̂)M‖(λ) + n̂n̂M⊥(λ) (4.15)

(as does the true tensor N), whereas the pseudo-tensor C is given by ε · n̂ C(λ).
The scalar coefficients appearing in these expressions have already been calculated

for λ� 1 (Happel & Brenner 1965; Kim & Karrila 1991):

6πM‖(λ) = 1 − 9
16
λ + 1

8
λ3 + O(λ4), 6πM⊥(λ) = 1 − 9

8
λ + 1

2
λ3 + O(λ4), (4.16)

64πC(λ) = λ4 + O(λ5). (4.17)

We are not familiar with any evaluation of N for λ� 1; nevertheless, the known
mobility relation (Leal 1992) for a particle which is suspended in an unbounded
liquid domain,

N(λ) → 1

8π
I as λ → 0, (4.18)

is sufficient for the present analysis. Using (4.12) and (4.13) we therefore find that the
particle translational velocity for the perpendicular and parallel cases is respectively
given by

U = 1
6

[
1 − 9

16
λ + 1

4
λ3 + O(λ4)

]
êy, U = − 1

6

[
1 − 9

8
λ + 9

16
λ3 + O(λ4)

]
êz. (4.19)

Since the torque is O(λ2) at most, it is clear from (4.17) that for O(λ3) this velocity
is only affected by the force. For the perpendicular case the particle also acquires an
angular velocity along the x-axis of magnitude λ2/32 + O(λ4).
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5. Concluding remarks
We have investigated the effect of a remote solid wall upon the hydrodynamic

loads experienced by a spherical insulating particle which is exposed to an externally
imposed uniform electric current, which lies parallel to the wall, and a perpendicular
magnetic field, which is either parallel or perpendicular to the wall.

We have employed an iterative reflection scheme which provides asymptotic
expansions for the hydrodynamic loads acting on the particle. Our interest resides in
obtaining the leading-order corrections to the unbounded-fluid-domain loads. While
the slow 1/r decay of the unbounded-fluid-domain velocity field suggests an O(λ)
force correction, it turns out that the force is actually O(λ3). This wall contribution
enhances the unbounded-fluid-domain force. The magnitude of this enhancement for
the perpendicular case is twice as large as that in the parallel case. The perpendicular
case also results in an O(λ2) torque along the applied current.

When the magnetic field lies parallel to wall one can distinguish between two
scenarios. If the magnetic field lies in the positive direction of Ê × n̂, the particle is
repelled from the wall. Otherwise, it is attracted to it, implying that the remote-wall
approximation must eventually break down.

The weak long-range decay of the wall effect resembles that of typical electro-
phoretic phenomena (Keh & Anderson 1985). Electrophoretic motion, however, is
force free; while no external forces act on the particle in the present mechanism, the
well-known properties of force-free motion in the creeping-flow régime do not apply
since the flow is not governed by the homogeneous Stokes equations.

Appendix A. Fourier integral representation of v
(1)
P

Our staring point is the representation (Happel & Brenner 1965)

1

R
= F

{
e−k|Z|

k

}
(A 1)

where near Z = −1 we replace |Z| by −Z. Upon using the relation

∂

∂ξ

(
1

R

)
= − ξ

R3
, ξ = X, Y, Z, (A 2)

and differentiating under the integral sign, we readily obtain

X

R3
= −iF

{
αekZ

k

}
,

Y

R3
= −iF

{
βekZ

k

}
,

Z

R3
= −F {ekZ}. (A 3)

Specifically, substituting Z = −1 in the last expression yields(
1

R3

)
Z=−1

= F {e−k}. (A 4)

Following that, we employ the relation

ξ

R5
= −1

3

∂

∂ξ

(
1

R3

)
, (A 5)

Using (A 4) for ξ being either X or Y and exploiting the commutativity in
differentiating with respect to ξ and evaluation at Z = −1 we readily obtain(

X

R5

)
Z=−1

= − i

3
F {αe−k},

(
Y

R5

)
Z=−1

= − i

3
F {βe−k}. (A 6)
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Similarly, using the relation

∂2

∂ξ 2

(
1

R

)
= 3

ξ 2

R5
− 1

R3
, (A 7)

in conjunction with (A 1) and (A 4), yields(
X2

R5

)
Z=−1

=
1

3
F {e−k} − 1

3
F {α2e−k} (A 8)

and (
Y 2

R5

)
Z=−1

=
1

3
F {e−k} − 1

3
F {β2e−k}. (A 9)

Application of (A 7) for ξ = Z at Z = −1 yields(
1

R5

)
Z=−1

=
1

3
F {ke−k} +

1

3
F {e−k}. (A 10)

The last expression found using this technique is XY/R5; using the relation

∂

∂X

(
Y

R3

)
= −3

XY

R5
(A 11)

and employing (A 6) yields

XY

R5
= −1

3
F

{
αβ

k
ekZ

}
. (A 12)

To obtain the remaining expressions in (4.9) we employ the inverse Fourier
transformation for any function f of X and Y :

F −1 {f } =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (X, Y ) e−i(αX+βY ) dX dY. (A 13)

Differentiation under the integral provides the relations

F −1

{
X2

R3

}
= − ∂2

∂α2
F −1

{
1

R3

}
, F −1

{
Y 2

R3

}
= − ∂2

∂β2
F −1

{
1

R3

}
, (A 14)

which, upon use of (A 4), readily yield(
X2

R3

)
Z=−1

= F

{(
1

k
− α2

k3
− α2

k2

)
e−k

}
(A 15)

and (
Y 2

R3

)
Z=−1

= F

{(
1

k
− β2

k3
− β2

k2

)
e−k

}
. (A 16)

Similarly, differentiation under the integral gives

F −1

{
XY

R3

}
= i

∂

∂β
F −1

{
X

R3

}
, (A 17)

which, using (A 6), results in

XY

R3
= −F

{
αβ

k3
(1 − kZ) ekZ

}
. (A 18)
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Appendix B. The functions g1, g2 and g3

The functions g1, g2 and g3 are calculated from the Fourier transform of (3.7) for
n=1. In the perpendicular case we find

g1 =
αλe−2k

24βk3
(λ2k4 − 3k3 + α2λ2k2 + β2λ2k2 + 3k2 − 3α2k − 3β2k − 3α2 − 3β2), (B 1a)

g2 =
λe−2k

24αβk2
(λ2k6 − λ2k5 − 3k5 + β2λ2k4 + 6k4 − 3β2k3 − α2λ2k3 − 3k3 − 3α2k2

− α4λ2k2 − α2β2λ2k2 + 3α4k + 3α2k + 3α2β2k + 3α4 + 3α2β2) (B 1b)

and

g3 =
λe−2k

24αβk3
(λ2k6 − 3k5 + β2λ2k4 + 3k4 − 3β2k3 − 6α2k2

− α4λ2k2 − α2β2λ2k2 + 3α4k + 3α2β2k + 3α4 + 3α2β2). (B 1c)

In the parallel case we find

g1 =
iαλe−2k

12k
(kλ2 − 3), (B 2a)

g2 =
iλe−2k

24αk
(λ2k4−λ2k3−3k3−3α2λ2k2+β2λ2k2+3k2+9α2k−3β2k+3α2−3β2) (B 2b)

and

g3 =
iλe−2k

24αk2
(λ2k4 − 3k3 − 3α2λ2k2 + β2λ2k2 + 9α2k − 3β2k + 3α2 − 3β2). (B 2c)
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